E Permutation Inversions

Consider permutations of n integers from 1 to n.

For a permutation a, the number of inversions inv(a) is the number of pairs of indices (i, j) such that i < j and $a_i > a_j$.

The composition a(b) of permutations a and b is the permutation $b_{a_1}, b_{a_2}, \ldots, b_{a_n}$.

You are given two permutations of n integers: p and q. Find a permutation r such that the value $\max(\text{inv}(p(r)), \text{inv}(q(r)))$ is the minimum possible.

INPUT

The first line contains a single integer n $(1 \le n \le 5 \cdot 10^5)$.

The second line contains n integers p_1, p_2, \ldots, p_n $(1 \le p_i \le n, p_i \ne p_j \text{ for } i \ne j)$.

The third line contains n integers q_1, q_2, \ldots, q_n $(1 \le q_i \le n, q_i \ne q_j \text{ for } i \ne j)$.

OUTPUT

The first line should contain the minimum possible value of $\max(\operatorname{inv}(p(r)),\operatorname{inv}(q(r)))$.

The second line should contain n integers: the elements of permutation r. If there are several possible solutions, print any one of them.

SAMPLES

Sample input 1	Sample output 1
3	1
1 2 3	1 3 2
3 1 2	