B Palindromic Walk

TIME LIMIT: 8.0s
MEMORY LIMIT: 1024MB

Bob loves walks. But not just any walks: Bob only enjoys palindromic walks.

The graph where Bob lives has n nodes. Initially, no two nodes are connected. You need to process q queries of two types:

- "1 $u \ v \ c$ ": Add a bidirectional edge between two different nodes u and v labeled with the character c. Before this query, it is guaranteed that there is no edge between u and v.
- "2 u v": Answer whether there exists a walk between two different nodes u and v such that the characters on the edges in the walk form a palindrome. If such a walk exists, output 1; otherwise, output 0.

A walk from u to v is an alternating sequence of nodes and edges starting at node u and ending at node v. In this walk, the same edge may be used multiple times.

A palindrome is a sequence of characters that reads the same forward and backward (for example, "radar", "abba", "zzz").

INPUT

The first line contains two integers, n and q: the number of nodes and the number of queries, respectively $(2 \le n \le 1000, 1 \le q \le 3 \cdot 10^5)$.

Each of the following q lines contains a query in the format described above: either "1 u v c" or "2 u v" (u and v are integers, $1 \le u, v \le n, u \ne v$, and c is a lowercase English letter). All bidirectional edges added by queries of type 1 are distinct.

OUTPUT

For each query of the second type, output a line with a single integer: 1 if such a walk exists, or 0 if it does not.

SAMPLES

Sample input 1	Sample output 1
5 6	0
1 1 2 a	1
1 2 3 b	1
2 1 3	
2 2 3	
1 3 4 a	
2 1 4	

Sample input 2	Sample output 2
5 7	1
1 1 2 a	0
2 1 2	1
1 2 3 b	
1 3 4 a	
2 2 4	
1 4 5 a	
2 2 5	