H Wardrobe 3

TIME LIMIT: 2.0s MEMORY LIMIT: 1024MB

Your friend Valerio has been locked into a wardrobe for the third time. His kidnappers will let him go on a very specific condition. They gave you two integers n and k and asked you to find two distinct integers a and b such that a-b is a multiple of k, both a's and b's digits are permutations of n's digits and neither of them starts with 0. It might also be possible that such a and b do not exist. In that case Valerio will be locked in the wardrobe forever.

INPUT

The first line contains two integers: m and k ($2 \le m \le 5 \cdot 10^6$, $2 \le k \le 5 \cdot 10^6$, $4 \le m \cdot k \le 10^7$). The second line contains an m-digit integer, n, that does not have leading zeros.

OUTPUT

If it is impossible to find two integers satisfying the conditions, print -1. Otherwise, print two lines, containing two suitable integers a and b. a and b be permutations of digits of n, they should not have leading zeros and should be different.

SAMPLES

Sample input 1	Sample output 1
6 3	102234
123042	102243

Explanation of sample 1.

The numbers $102\,234$ and $102\,243$ are both digit permutations of $123\,042$. Also, $102\,243-102\,234=9=3\cdot3$. There are other possible solutions as well.

Sample input 2	Sample output 2
6 3 111111	-1

Explanation of sample 2.

There is only one unique digit permutation of 111 111. Thus, it is impossible to choose two different numbers.